
H5P Code Editor
Project Report

Max Iraci-Sareri
School of Computer Science
The University of Adelaide

a1771834@student.adelaide.edu.au

Supervisor: Dr Cheryl Pope
School of Computer Science
The University of Adelaide

cheryl.pope@adelaide.edu.au

2021/06/11

Abstract

H5P is an open-source online content project run by
community members. Using HTML5 content amongst
JavaScript and CSS, H5P provides interactive web con-
tent through an easy-to-use plugin that can be directly
integrated into other web pages. While H5P has many
different functions and elements, no code editor exists.
This project investigates a means to create such an
editor through the H5P platform, including research
on existing JavaScript-based editors, accessibility, and
compliance to H5P’s standards and the W3C Web Con-
tent Accessibility Guidelines.

1 Introduction

The integration of code editors into existing online
content can assist with education and experimenta-
tion when approaching any programming topic. To
this end, many existing online platforms have included
JavaScript-based code editors into relevant spaces,
from the ‘Tryit Editor’ present on W3Schools to the
JavaScript sandbox site JSFiddle.

H5P is an open-source community-developed
project for the purpose of creating and sharing reusable
HTML5 modules. Using JavaScript, they are often in-
teractive, and can be featured on many existing web-
pages such as WordPress or Canvas. H5P plugins work
to reliably and easily share content for the purpose of
education or demonstration. To this end, it has many
usable plugins, including interactive video, quizzes, and
presentations. However, H5P’s collection of interactive
elements does not include a code editor yet.

2 Project Motivation

2.1 Implementation for H5P

Implementation of a code editor for H5P would allow
educators to more efficiently teach programming on-
line. From the way the editor is structured in com-
parison to other H5P content, new questions could
be posed, including identification and fixing of errors
in pre-written code, or full implementation questions
where previously writing code in-browser could have
led to small errors or issues.

A fully-functional code editor would also not be re-
stricted in terms of programming language; allowing
use of many popular languages would mean educators
could tailor the editors to the course content at will.

2.2 Accessibility Issues

When approaching this problem from the surface level,
a question may arise: ‘why not use any existing open-
source code editor to power the H5P plugin?’ Unfor-
tunately, most open-source online code editors aren’t
built to the same standards that H5P expects. Acces-
sibility is a core feature of all H5P content, through the
W3C Web Content Accessibility Guidelines (WCAG);
however, most existing editors don’t incorporate many
elements targeted for accessibility. This project investi-
gates several different existing editors to find solutions
to the following issues.

2.2.1 Tab Functionality

The prime example of problematic accessibility in on-
line code editors is in the functionality of the Tab key;
when it is pressed, the common standard for code edi-
tors is to input a number of spaces or a Tab character.
However, when the Tab key is pressed in a browser,
the convention is to move focus to the next element
on the page; this helps people who may have issues
using a browser using standard methods. The dif-
ference in standardised functionality means that most
browser-based code editors implement the more famil-
iar ‘add spaces or tab’ method. However, this func-
tion breaks Criterion 2.1.2 (‘no keyboard trap’) of the
WCAG, which states “If keyboard focus can be moved
to a component of the page using a keyboard interface,
then focus can be moved away from that component
using only a keyboard interface”[1].

2.2.2 Screen Reader Support

Section 1.1 of the WCAG, entitled ‘Text Alternatives’,
focuses on requiring text-based alternatives to content
that may be purely visual. Criterion 1.1.1 (‘Non-text
Content’) states that if any content “accepts user in-
put, then it has a name that describes its purpose”[1].
This is normally achieved in HTML5 by the inclusion
of aria tags; several different types of these tags exist
to mark content for screen readers. Most online code

1



editors do not include aria tags; this negligence will
result in screen readers interpreting the content im-
properly and potentially reading out invisible elements
or not reading out visible ones.

2.3 Research Questions

The project is guided by the following main research
questions:
RQ1: To what extent can an existing code editor
be integrated into a plugin for H5P using the H5P
framework?
RQ2: What considerations must be taken to develop
for the H5P platform, and how does that affect feature
implementation?
RQ3: What features need to be implemented in an
online code editor through H5P to make it accessible
to all users?

3 Literature Review

3.1 Existing Code Editors

This section investigates individual existing online code
editors to determine their implementation, accessibil-
ity, and suitability for use on the H5P platform.

3.1.1 CodeMirror

CodeMirror is a popular fully-featured code editor with
support for over 100 languages alongside autocomple-
tion, linting, and many other configurable features. Ac-
cording to CodeMirror’s website, over 170 webpages
utilise CodeMirror, including GitHub’s in-browser edit
feature[2].

At the time of writing, the most recent stable
version of CodeMirror is CodeMirror 5, which is the
version most websites implementing CodeMirror use.
CodeMirror 5 does not properly support pressing the
Tab key to change focus as described in section 2.2.1.
As of June 2020, the upcoming CodeMirror 6 entered
open beta[3]; this version contains correct accessibility
standards including for the Tab key, as it is “designed
from the start with accessibility in mind”[4].

CodeMirror 6’s documentation shows how exten-
sively customisable it is, with the ability to add and
remove individual features (such as text highlighting or
autocompletion) at any time. This modularity along-
side its support for bundling (see section 4.2) makes it
a good fit for integration into a H5P module.

CodeMirror 6 was the code editor that was eventu-
ally chosen for use in this project. A potential down-
side when choosing CodeMirror 6 was that it is still in
beta; any problems or errors could have been unfixable
without further development. This led to some minor
issues while developing for accessibility.

3.1.2 EditArea

EditArea is a free JavaScript editor designed to func-
tion around an HTML5 textarea tag. Some of the

supported features include customisable real-time syn-
tax highlighting, auto-indentation, and “possible plu-
gin integration”[5]. However, it doesn’t seem to sup-
port CSS customisation natively, and performs poorly
on large amounts of text.

Furthermore, it does not have screen-reader sup-
port, nor does it support any method to shift focus
away from the editor, so it cannot be considered acces-
sible.

3.1.3 Ace Editor

The Ace Editor is the functional backbone of the
”Cloud9” online collaborative IDE. It is fully-featured
and contains support for large documents alongside
multiple cursors and live syntax checking [6].

Unlike many other editors investigated in this
project, Ace provides a ‘built’ version of the source
code, preventing the user from having to bundle an npm

package (see section 4.2). This saves on development
time and allows for faster updates.

Ace appears to have some screen-reader support in-
sofar as the line numbers and structure are marked not
to be read aloud. It, however, does not support press-
ing Tab to change focus, instead adding space charac-
ters no matter what.

3.1.4 CodeFlask

CodeFlask is a minimal code editor designed for small
code snippets. It is advertised as being good “as [a]
code playground”[7], which could fit the premise of a
H5P plugin well. Unfortunately, it seems that it has
many more drawbacks than features; the site warns
against using it for any large-scale purpose or on any
older browsers, and suggests CodeMirror for “a robust
solution”.

CodeFlask does not support screen readers, and
traps focus inside the editor element, preventing proper
accessibility. Therefore, it remains unsuitable for an
H5P plugin in its current state.

3.1.5 Monaco Editor

Microsoft’s Monaco Editor is the code editor behind
the Visual Studio Code IDE. Its main feature is its Rich
Intellisense for several languages, which includes code
auto-completion and parameter information, alongside
automatic code syntax checking[8].

Monaco Editor has syntax-highlighting support for
over 50 languages. It has fully-featured support
for screen readers and accessibility, including screen-
reader-compatible instructions on the current line and
column, alongside information on how to change focus
from the code editor to a different element.

For use in the H5P code editor, the Monaco edi-
tor appears only somewhat suitable. The process to
create support for syntax-highlighting for a language is
simple and straight-forward, and supports simple col-
oring and themes. However, it does not support mobile
frameworks or Rich Intellisense for C-based languages
or Python.

2



3.2 Designing for H5P

As no code editor plugin exists for H5P currently, this
section focuses on approaches on generally producing
content for the H5P platform, with the benefits and
challenges that come with it.

3.2.1 Visual Design

Investigation and research has been performed to de-
termine what works best aesthetically for H5P con-
tent. Wilkie et. al [9] determined that H5P activities
should be “engaging, user friendly, [and] visually pleas-
ant”; the information presented should be “easy to read
and comprehend”. To fulfil this in the H5P code edi-
tor, the overall structure would remain relatively sim-
ple; the editor itself would display in an easy-to-read
monospaced font at a reasonable size. Since the edi-
tor would only have information as comprehensible as
the code inside it, syntax highlighting would be imple-
mented corresponding to the editor’s designated pro-
gramming language.

Furthermore, to ensure consistency, the editor
would have to be styled as close to H5P’s existing mod-
ules as possible, which should help lower cognitive over-
load.

3.2.2 Active Participation

In an article entitled Encouraging students to take ac-
tion in developing problem-solving competency, Tran et.
al state “Activities that are based on the principle of
play can have great potential in supporting students’
activity and motivation”[10]. To allow programmers to
directly type their code with ease of syntax highlight-
ing would facilitate active learning and participation,
so the code editor would somewhat fulfil the principle
of play. Alongside the editor, an optional field could
be added for creators to add written instructions, to
assist in guiding participants.

Ideally, to facilitate active learning, the code would
be executable in-browser to show users the results of
their programming. This is out of the scope of this
project for most programming languages, and would
work better in a separate package or module; the code
editor should instead support exporting its text to a
separate H5P module which may have such functional-
ity.

4 Methodology

4.1 Tools and Software Used

4.1.1 Development Environments

As a fast and simple development environment, Visual
Studio Code was used to program and iterate the plu-
gin, but most IDEs could have been used to achieve a
similar result.

As H5P exists as dynamic content for learning man-
agement solutions, it does not exist in a static context.
This means a database of some kind is required to it-
erate and develop for H5P content. The guides and

tutorials for H5P recommend using Drupal for devel-
opment as it allows for faster updates and is less restric-
tive regarding plugin version numbers; it was therefore
selected for use in this project.

4.1.2 Code Editor Base

The fundamental online code editor used for this plugin
was CodeMirror 6, due to the reasoning presented in
section 3.1.1. The most useful feature from the use of
CodeMirror was its modularity; the ability to load only
syntax highlighting for the plugin’s language options as
opposed to a larger collection of languages at once dras-
tically lowered the file size of the bundled JavaScript.

4.1.3 H5P Framework

H5P has its own requirements for development; work-
ing within these restraints allows for easier modularity
for all plugins within the system. Plugins built in H5P
do not have their own existing HTML files to serve
as a framework; instead, all elements and JavaScript
have to be injected into the page later through use of
jQuery and H5P’s internal functions. Development was
conducted for this project with this in mind only us-
ing the framework provided by H5P. This made testing
more complicated as it had to exist in the context of
another plugin (see section 4.3).

4.2 Bundling the Code

CodeMirror 6, like most npm packages, is a collection
of ECMAScript modules. These modules are designed
to work as multiple JavaScript files that all depend
on each other, making code modular, easy to use, and
clearer to read and debug. However, modern browser
support for ECMAScript modules is lacking at best;
while some modern browsers have theoretical support
for modular systems, their support for nested depen-
dencies is questionable. This issue is compounded by
the fact that older browsers such as Internet Explorer
or old Safari versions have no support for modules en-
tirely.

Bundling describes the process of taking a script
and combining it with its dependencies (and, recur-
sively, their dependencies) until it is entirely opera-
ble from one individual script that can be loaded by
most browsers. This process can be performed by
several different bundling software, each with their
own advantages. CodeMirror recommends use of
Rollup, and most existing H5P plugins use Webpack,
but the bundler used in this project was ParcelJS
due to its simplicity and efficiency compared to other
bundlers[11]. To make iteration as smooth as possible,
an automated script was set up to copy the bundled
code into the correct location whenever changes were
made.

3



4.3 H5P Widgets

Within the framework of H5P, two layers of content
tools are available: widgets and plugins. While simi-
lar in appearance, they exist in two different contexts.
Plugins exist for content authors to configure and end-
users to interact with; they dictate how the content is
displayed and what interactions users can provide to
it. Widgets, however, exist in the context of content
authors only; any widgets themselves are not visible
in the finished content, instead being used to assist in
its creation. Examples of widgets include color pickers
or question editors. Commonly widgets are not fully
required for creation of content, but instead make it
easier for authors to quickly iterate and create what
they need.

The distinction between widgets and plugins is not
very clear in H5P’s documentation for newer develop-
ers, so it can be hard to decide which is better to create
for the platform. This problem is amplified by the fact
that plugins can also exist as dependencies for other
plugins without being widgets; for example, the ‘H5P
Branching Scenario’ plugin creates ‘a dynamic course
made from other H5P libraries that changes depending
on your users’ answers.’

When deciding what form this project’s code edi-
tor should take, the choice was difficult as a code editor
could see use as both. Plugin form would allow for au-
thors to combine the editor into a compiler plugin to
see and grade the results of users’ typed code. However,
widget form would allow authors to more easily type
code into existing plugins, saving time over a tradi-
tional HTML textarea element. This project focuses
on the creation of a widget rather than a plugin to at-
tempt to make content creation more simple; this was
partially how it was eventually tested (see section 5.1).

4.4 Styling

Figure 1: The proof of concept used as a baseline for
the project.

CSS styling of the code editor began as an itera-
tive process. Initially a proof of concept was derived
based simply on addition of CodeMirror to the H5P
workspace (see figure 1). As an initial iteration the base
CodeMirror editor font was changed to the sans-serif
monospaced font Consolas for readability. From there,
as the code editor was initially intended to be a full
plugin, experiments involved attempting to match the

style of H5P’s full-plugin elements such as the Branch-
ing Scenario (figure 2) or Drag and Drop (figure 3) plu-
gins. These plugins attempted a smoother look, with
rounded edges and box shadows for most elements.

Figure 2: An example use of the H5P Branching Sce-
nario plugin. All elements in the foreground have some
level of rounded corners.

Figure 3: An example use of the H5P Drag and Drop
plugin. Note the rounded corners on most elements,
and the subtle box shadows on the draggable elements.

As the scope changed to become a widget (see sec-
tion 4.3), the styling decisions adapted alongside it,
moving towards the style of code blocks on the H5P.org
website in tutorials and on the forum. This style in-
volved simplistic solid-color design alongside an icon
indicating the section contained code. It also displayed
the programming language for the code block promi-
nently in capital letters above the code. Recreating
this style involved adding a dependency to the code
editor widget in the form of the FontAwesome plugin,
which provided the aforementioned icon. FontAwesome
was also used to add a settings gear on the top-right
of the widget, used to configure language and spacing
settings.

With these styling decisions, the baseline style of
the editor was finalised (figure 4); additional auxiliary
styling involved adjustment of selection dropdowns in
the settings menu for ease of use and font size for the
CodeMirror editor for readability.

4.5 Challenges

4.5.1 Caching

While developing H5P content, rapid iteration of files
is to be expected, updating functionality or visuals.
This continuous development works well to ensure that
changes do not have to be compiled, and can be ap-
parent visually. However, to be more efficient with

4



Figure 4: The final styling for the H5P.CodeEditor wid-
get.

data transfer, most modern browsers cache content
such as scripts or stylesheets, which can be detrimen-
tal towards the development process. When working on
script functionality, it can be hard to determine when
caching has occurred, as it is not immediately appar-
ent visually. This can lead to the code in a developer’s
IDE mismatching what appears on the website. In ex-
treme cases, HTTP redirects can be preserved, locking
out access from a website until the browser’s cache is
cleared.

Caching issues were numerous and caused many is-
sues while developing the H5P Code Editor widget.
Most browsers have workarounds and toggles to pre-
vent caching while developing, but these features are
usually not very user-friendly or not typically enabled
by default; for example, to prevent caching in Fire-
fox, it has to be enabled in the developer console, and
then subsequent refreshes must have the console open
to prevent a cache for that specific site.

4.5.2 Documentation / Creation Guides

While H5P systems are simple to understand superfi-
cially from the tutorials provided on the H5P.org web-
site, the creation of more complex content can be diffi-
cult for developers as the necessary guides are usually
hard to find or missing. This caused issues with the
creation of the code editor as guides for the creation
of widgets only extend to a simple text output, expos-
ing only a singular parameter rather than the three
required for this project.

Furthermore, there seems to be very little in terms
of accessible documentation. While the H5P developers
have an automatic generator working to create some
minimal documentation based on code comments, it is
not only hard to use due to its lack of detail but also
nearly unnavigable as there is no search function.

Some functionality can be gleaned from elsewhere,
however; H5P hosts most of its existing plugins’ code
on their public GitHub organisation. This allows newer
developers to look through the code present in other
widgets and plugins and discern the functionality re-
quired for their own contributions. Discovery and ex-
perimentation through these existing repositories is ef-
fective for some code questions, but has its own limi-
tations; many of the plugins present are not consistent
with each other, having only small programming simi-
larities.

5 Experimental Setup

5.1 Testing

5.1.1 Validation Testing

As part of the widget creation process, the core H5P
code requires any input to be validated before being
passed through to a plugin. For some widget instances
this can mean a range of validation; for example, check-
ing the input is in a correct range, testing if a color
string is valid, or ensuring an email address has the
correct format. For this project, there was very little
required in terms of validation testing; the only main
requirement to pass was that the code formatted was
output as a string. Any further validation becomes
unnecessary; for example, testing for code compilation
success would be not only out of this scope in terms
of its widget nature but also not helpful in comparison
to the amount of effort undertaken to add it. Fur-
thermore, any validation that requires testing of a pro-
gramming language would add vast overheads in the
form of generalisation for every language included in
the widget itself.

5.1.2 Individual Testing

To test the widget, a small sample plugin based on the
H5P tutorial ‘Greeting card’ plugin was created. The
sample plugin would take input from the code editor
widget and output it to the end-user. Despite having
no core interactivity, it was useful in testing whether
the parameters were being communicated from the
widget to the main content.

5.1.3 Testing in Other Plugins

The H5P.CodeEditor widget created in this project was
implemented in a way that makes it reasonably open
for extension and use in larger H5P plugins. To this
end, three parameters were exposed; the code itself, the
language selected in the widget, and the indentation
style in terms of spacing. This allowed any plugin using
the widget to use these parameters if necessary.

An example of the code editor widget being im-
plemented into a plugin is H5P.ParsonsPuzzle, which
uses it to help content authors create interactive Par-
sons puzzles for students. The plugin uses the code edi-
tor as an input method, which allows it to be more flex-
ible and extensible than a simple HTML5 textarea.
Integration towards this plugin was an effective way
of testing what the code editor itself needed, and this
drove the need to expose the further parameters as re-
quired. At time of writing, the plugin has successfully
integrated use of the widget, demonstrating successful
development [12].

5



6 Results

6.1 Functionality

Based on the testing outlined, the code editor widget
produced is functional, and passes the simple validation
testing. It successfully matches the styling of similar
H5P content in the correct context of a widget and
is extensible enough to be a contribution towards the
creation of any other H5P content if desired.

6.2 Documentation

To assist with ease of use, documentation for the wid-
get was written covering the syntax, setup, and depen-
dencies required to incorporate the code editor into an
existing plugin’s creation system. Specifically, the con-
figuration options regarding placeholder code, indent
spacing, and default programming language are all dis-
played. This documentation is saved as a README file
in the GitHub repository for the widget (see figure 5).

Figure 5: A portion of the README documentation
available on the GitHub repository for this project.

6.3 Research Questions

The results from this project somewhat successfully an-
swer the research questions presented in section 2.3.
This section answers each individual question formally.

In terms of integrating an existing code editor into
the H5P framework, the process is straightforward and
simple. H5P accepts integration of other NPM code
through the use of bundling, so through CodeMir-
ror 6 the integration experience was rather simple.
Through the process undertaken in this project, where
the bundled code and main integration were performed
in two different contexts, the process was made more
difficult through the need to include functions in the
global namespace; this is not mandatory, however,
as both contexts can and should be combined for a
smoother and cleaner programming experience (see sec-
tion 8.2.1).

Considerations made as part of the development
process for the H5P platform primarily comprised of
the decision between widget and core plugin function-
ality. This affected feature implementation through
scope, users’ input methods in terms of configuration,

core target audience, and main styling and aesthetics.
Through this singular decision, while the results may
have performed a similar purpose, they would have
been different in their functionality as part of the H5P
context.

Accessibility was a core feature of this project as
mentioned in the third research question; important
steps were taken throughout the process of creating
the widget to keep features accessible where possible.
These features aimed to comply with the Web Con-
tent Accessibility Guidelines, mainly in terms of key-
board control and screen reader access. While these
accessibility ideals were not fully realised through this
project, the core functionalities of them still exist, and
the main research undertaken as part of this project’s
motivation demonstrates the need for more accessible
features throughout all Web content in future.

6.4 Limitations/Issues

6.4.1 Scope

As the code editor was developed with a small scope,
it is missing many critical features that may make it
extensible to more than just the small number of H5P
plugins it was tested in. Primarily, there are only three
programming languages present: Java, Python, and C;
while these languages may cover a wide range of re-
quired needs, it is far from acceptable to call the widget
generalised in this case.

Furthermore, while the code editor does expose pa-
rameters for use in other plugins, it only exposes three;
more information as part of the widget such as bracket
styling or total line and character count is not accessi-
ble and would have to be discovered by analysing the
code block output itself.

6.4.2 Accessibility

One of this project’s core research questions involves
accessibility for all users, and while the final result
technically fits this description, further development
is required to fully achieve accessibility. Currently no
dark theme is implemented, which can cause eye strain
and other sight-related issues with black-on-white text.
Furthermore, while Tab support is functional, the func-
tionality is not described anywhere in a way that screen
readers could access; this severely limits the accessibil-
ity since it is still possible for users to get stuck in the
code editor element without any understanding on how
to perform the escape sequence.

6.4.3 CodeMirror 6

CodeMirror 6’s beta status as outlined in section 3.1.1
caused some limitations during this project. These lim-
itations included inconsistency with some accessibility
features; in particular, the Tab escape would rarely in-
consistently cease functionality over different sessions
for inexplicable reasons. For the majority of the H5P
userbase this should not cause major issues as it was
incredibly infrequent, but further investigation will be
required into the exact cause of the bug.

6



7 GitHub Repository Access

The GitHub repository for the project can be
found at https://github.com/uofa-Parsons-hub/

H5P.CodeEditor.

8 Conclusion

8.1 Project Changes

When attempting a project similar to this, the first
consideration taken should be consideration of target
audience; whether to create for content developers or
end-users will determine whether a plugin or widget
is created. In this project this decision was delayed
due to lack of clarification regarding the benefits and
differences between widgets and core plugins; this inde-
cision lasted until approximately midway through the
project’s timeframe, which led to wasted development
time and effort. In future, this decision should be made
first and foremost, as it shapes what form of develop-
ment will be undertaken. Steps that can be taken to
answer the ‘widget or plugin’ question could include
investigation as to what the actual target audience of
the content would be, whether that is content authors
or the users themselves.

8.2 Future Work

8.2.1 Bundling Process

While developing the plugin, the bundling process was
performed separately, and the bundled code would be
copied over through an automated script into the repos-
itory whenever updated. This process made develop-
ment smoother and more reliable; however, this process
is normally not performed ahead of time for most H5P
projects. Instead, configuration and package files are
added to the repository so that any developer branch-
ing the code can build and bundle the code locally. The
process used for this project is not necessarily wrong,
as the license for CodeMirror permits distribution un-
der the same license, but in future this process should
be changed to conform to the H5P standard.

8.2.2 Accessibility

As mentioned in section 6.4.2, the current version of
the widget contains subpar optimisation in terms of
dark theming or screen reader explanations. To fix the
theme issue, an option could potentially be included in
the settings menu to change the colouring; CodeMirror
supports changing colour themes dynamically so this
potentially would not result in much more development
time. To fix the poor explanation of the Tab function-
ality, a small label readable by screen readers could be
added which describes the correct escape method.

8.2.3 Documentation Contribution

To alleviate some of the challenges in terms of docu-
mentation and guides mentioned in section 4.5.2, fu-
ture work could entail writing more expansive guides
for the development of H5P content. Primarily this

could include widgets that do not return the ‘text’ type;
changing the return type of a widget is simple once un-
derstood but hard to discern without prior knowledge.
To this end, a lot of H5P’s existing documentation is
superficial at best; while the entry-level creation tutori-
als work well for their purpose, any aspiring developer
seeking to create more complex projects have to re-
sort to reverse engineering. Because of this, more work
could be undertaken to add to the existing guide con-
tent, potentially preventing the same pitfalls that arose
during this project.

8.3 Reflection

While there are many more additions that could be
made towards the widget as a whole, in general the
project provided experience into the creation and im-
plementation of open-source content as a piece of a
larger codebase. Personally the process taught a lot
about how H5P works and why it as a system is so ben-
eficial to learning management solutions, but also how
H5P suffers from a lack of full documentation. Future
attempts to create H5P content will retain full context
of the process and decisions required for successful de-
velopment, including the choice for widget versus plu-
gin creation.

References

[1] Michael Cooper et al. Web Content Accessibil-
ity Guidelines (WCAG) 2.1. W3C Recommen-
dation. W3C, 2018. url: https://www.w3.org/
TR/2018/REC- WCAG21- 20180605/ (visited on
2021-03-23).

[2] Marijn Haverbeke. CodeMirror: Real-world Uses.
2021. url: https : / / codemirror . net / doc /

realworld.html (visited on 2021-03-21).

[3] Marijn Haverbeke. CodeMirror 6 Enters Beta.
June 29, 2020. url: https://marijnhaverbeke.
nl/blog/codemirror-6-beta.html.

[4] Marijn Haverbeke. CodeMirror 6. 2021. url:
https://codemirror.net/6/ (visited on 2021-
03-20).

[5] Christophe Dolivet. EditArea. 2010. url: https:
//www.cdolivet.com/editarea/ (visited on
2021-03-21).

[6] ajax.org. Ace - The High Perfomance Code Edi-
tor for the Web. 2021. url: https://ace.c9.io/
(visited on 2021-03-23).

[7] Claudio Holanda. CodeFlask - A micro code-
editor for awesome web pages. url: https://

kazzkiq . github . io / CodeFlask/ (visited on
2021-03-21).

[8] Microsoft. Monaco Editor. 2021. url: https://
microsoft.github.io/monaco- editor/ (vis-
ited on 2021-03-23).

[9] Sonia Wilkie et al. “Considerations for design-
ing H5P online interactive activities”. In: Open
Oceans: Learning without borders. Proceedings
ASCILITE (2018), pp. 543–549.

7



[10] D. Tran, T. Havlásková, and Z. Homanová. “En-
couraging students to take action in developing
problem-solving competency”. In: 2019 17th In-
ternational Conference on Emerging eLearning
Technologies and Applications (ICETA). 2019,
pp. 770–776. doi: 10.1109/ICETA48886.2019.
9039967.

[11] Devon Govett. Parcel. 2021. url: https : / /

parceljs.org/ (visited on 2021-03-23).

[12] Cheryl Pope, zhaoia, and wxw-matt.
H5P.ParsonsPuzzle. 2021. url: https :

/ / github . com / uofa - Parsons - hub / H5P .

ParsonsPuzzle (visited on 2021-06-11).

8


